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ABSTRACT

Materials science researchers spend significant time sifting through articles to
identify relevant methods and properties that could aid their own research. We
can model this challenge as a multi-document search, where each publication is a
document. However, such a system would perform poorly without labels for sen-
tences indicating whether they are actions, constituents, or properties due to the
way scientific articles are typically structured. We propose a wide range of models
with acceptable performance that could be used depending on system constraints.
We find that finetuned pretrained models exceed the performance of methods pre-
viously tested. These results highlight the importance of using transfer learning
when working with limited and unbalanced datasets.

1 INTRODUCTION

Scientific publications are considered to be the most reliable source of information about the pro-
cessing and construction of new materials. Because searching through these publications by hand
is time-consuming, experimental data about the structure and properties of the materials has been
made available in several manually curated databases. This has led to the development of techniques
to automate how we learn about materials, for example, with machine learning algorithms that can
predict specific properties – such as electrical, mechanical, or thermal ones – from the structure of a
material.

The relationship between processing/synthesis routes and the materials produced is another impor-
tant focus for materials scientists. In order to reproduce the materials described in an article, the
processing steps need to be followed precisely. Even for new materials discovery, these processing
steps can guide or inspire new production recipes. Once again, the manual search for these recipes
is a bottleneck to data extraction. NLP offers an opportunity to automate the information extrac-
tion from these articles. This project aims to facilitate optimized synthesis procedures of polymer
nanocomposites by finding the most relevant sentences in a given article. These will be classified as
”experimental work” by the algorithm. The code for this project can be found here.

Figure 1: Representation of the standard text mining pipeline: (i) scrape papers in markup format
from major article publishers; (ii) identify and classify synthesis sections; (iii) extract key infor-
mation including materials, amounts, sequenced operations, and conditions; (iv) store synthesis
procedures into a database for future analysis Wang et al. (2022).
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Our process closely follows that of Wang (2019), who applied several standard text embedding
techniques and classification algorithms to a dataset of 2,000 labeled sentences (see section 3 for
more details).

2 RELATED WORK

2.1 APPLICATIONS OF NLP IN MATERIALS SCIENCE

A plethora of materials science articles with valuable information is already available online. Ob-
taining the data from these articles has been challenging, as they are not presented in a way that a
machine can understand. NLP has been used in the materials science domain for the last decade to
tackle this problem. Initially, the focus was primarily on chemical texts. Examples of algorithms
trained on these include ChemicalTagger (Hawizy et al., 2011),ChemDataExtractor (Swain & Cole,
2016), and OSCAR (Gallarati et al., 2022). ChemDataExtractor was developed to extract chemical
information from scientific documents. It uses a corpus of ∼ 68,000 chemistry and physics papers
to generate a database of around ∼ 40,000 chemical compound records and associated magnetic
phase transition temperatures (Court & Cole, 2018). This work planted the first seeds of combin-
ing materials science and NLP by providing a tokenizer and chemical entity extraction algorithm
that are transferable to this domain (Shetty & Ramprasad, 2021b;a). Recently, scientists have been
working on utilizing existing articles to create materials synthesis and processing databases. So far,
researchers have taken this approach to metal oxides, germanium-containing zeolites, perovskites,
and solution-based inorganic materials. An annotation schema of synthesis procedures has also
been developed (Mysore et al., 2019; Kuniyoshi et al., 2020). As a result, it has become possible
to create new synthesis recipes and find sets of parameters that can lead to new materials synthe-
sis or replicate existing ones (Kononova et al., 2019; Huo et al., 2019; Kim et al., 2017a;b; 2019;
Jensen et al., 2019). Materials science corpora are also used for training word embedding models
(Kim et al., 2020; 2017c). Notably, this includes a word2vec embedding model using 3.3 million
scientific abstracts (Tshitoyan et al., 2019).

Moreover, fine-tuning a pre-trained language model for specific tasks has been shown to improve
results (Olivetti et al., 2020). This has motivated scientists to develop two BERT models (pre)trained
on materials science literature: MATBert and MatSciBert (Trewartha et al., 2022; Gupta et al., 2022).
MatSciBert is trained on 150,000 full-text articles with a focus on inorganic materials, while MAT-
Bert is trained on two million articles to understand the specific language used in materials science.
It can also do paragraph-level scientific reasoning. Both are trained on papers in the inorganic mate-
rials domain, but they are different in terms of the types of inorganic materials present in the training
data.

2.2 APPLICATIONS OF NLP IN POLYMER NANOCOMPOSITES

As mentioned in the previous section, the focus has been on inorganic materials. Polymer nanocom-
posites are organic materials and have garnered the attention of many scientists due to their unique
physical properties, such as melting temperature and stiffness (Zhao et al., 2016). These unique
properties are due to their structure of small amounts of nanoparticles suspended inside a poly-
mer. Scientists have created a framework to extract processing information from scientific articles
(Wang, 2019; Hu, 2022), see also section 2.1. The framework that Wang (see section 1) uses consists
of four steps: filtering out the irrelevant papers from the article database, identifying paragraphs to
select those with a focus on materials processing, classifying sentences in the processing paragraphs
depending on their meanings, and lastly, extracting exact experimental procedure and relevant con-
ditions. We are going to focus on the third step of this process in our project.

3 APPROACH

3.1 BACKGROUND

Our approach to this topic was heavily influenced by a PhD dissertation by Wang (2019). This paper
uses a dataset of ”2000 sentences [from materials science papers] that [have been] manually labeled
by material experts” (ibid.), a sample of which is available in appendix A.1. The four labels are:
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1. Materials Constituents (constituents): The materials or chemicals that form a poly-
mer (e.g., resin, nanoparticles, metals, solvents, etc.).

2. Materials Properties (properties): The physical properties of a material (e.g., thick-
ness, viscosity, tensile strength, melting point, etc.)

3. Experimental Action (action): What researchers did to/with a polymer in the course of
their experiments (e.g., heating, mixing, casting, drying, synthesizing, etc.)

4. Not Relevant (unrelated): All other sentences in a paper (e.g., references to other papers
or sections, filler sentences, vague descriptions, etc.)

The goal is to train an algorithm on this data to determine which category a given sentence falls into.

3.2 METHODS

Wang uses a mixture of techniques to achieve this. These techniques fall into two broad categories:
classification techniques and embedding techniques. For classification, the paper uses Logistic Re-
gression (LR), Support Vector Machine (SVM), and an Attention Neural Net1. For embedding, it
uses Bag of Words (BOW), TF-IDF, and word2vec.

Our first goal was to reproduce the results of the original paper. We did so by using the LR and
SVM models as well as the BOW and TF-IDF vectorizors available in scikit-learn (Pedregosa et al.,
2011), building a neural network in PyTorch (Paszke et al., 2019), and using a word2vec model
based on the Gensim implementation (Rehurek & Sojka, 2011)2, but trained further on articles in
the materials science space (Kim et al., 2017c) using a transfer learning approach. Although using
Kim et al.’s word embeddings – which are trained on 640,000 full-text metallic material synthesis
articles – is not ideal due to the differences in these types of materials, it still holds some relevance
because of similarities in experimental procedures.

3.3 EXTENSIONS

In addition, we tried several methods to improve the performance of the original models. The first
was to perform more preprocessing. Specifically, we introduced several types of new special char-
acters that group rare words with the same function3. We also performed large amounts of hyper-
parameter tuning on all of our models. Finally, we experimented with pretraining using RoBERTa
(Liu et al., 2019). Given the large size of the BERT models relative to the training data, we decided
to keep the post-encoder classifier simple. This approach did not utilize complex preprocessing or
embeddings prior to byte pair encoding.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION

As mentioned in section 3.1, the dataset was the same that was used by Wang (2019). It consists
of 2,000 hand-labeled sentences from over 100 different materials/polymer papers generated by the
Brinson Group at Duke (Wang et al., 2022). The original paper uses the F1 score as its evaluation
metric, so we use the same.

One challenge with the dataset was its imbalance. It had by far more action sentences than anything
else. The exact counts were:

• Action: 592

• Constituent: 173

• Unrelated: 120

• Property: 65
1See appendix A.4 for examples of attention scores for both the neural net and word2vec embeddings.
2Version=3.8.1.
3See appendix A.2 for more details.
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4.1.1 ADDITIONAL DATA

We were also provided some additional data by Dr. Bingyin Hu from the Brinson Group at Duke
University. This dataset comprised 2,958 polymer nanocomposite articles published by the Ameri-
can Chemical Society. It was provided in a JSON format, so we were able to find relevant articles
by searching the keys for ”Experimental Section.” This yielded an additional 6,882 sentences across
219 articles. We labeled these with a simple rule-based model, which looked for notable words in
the sentences (e.g., specific verbs for Actions) descriptors of properties for Properties, and terms
associated with manufacturing for constituents.

The label proportions were:

• Action: 1455
• Constituent: 307
• Unrelated: 4329
• Property: 791

However, testing this rule-based model against our original data performed very poorly. Table 1
and figure 2 illustrate this. However, limited human evaluation by domain-knowledgeable individ-
uals approved of the labels this model gave the new data, noting that many of the sentences were
somewhat ambiguous (i.e., talked about both constituents and actions in one sentence).

Label F1 Score

Action 0.22
Constituent 0.13
Unrelated 0.22
Property 0.46

Table 1: Results of predicting the original data with our rule-based model. The scores are unaveraged
F1 scores for each class. Results rounded to two decimal places.

Figure 2: Confusion matrix for the rule-based model on the original data. The scores are percentages
of the true labels. Chart generated with seaborn (Waskom, 2021).

4.2 MODEL AND TRAINING DETAILS

For the LR and SVM models, Wang (2019) did not provide any information on the hyperparame-
ters. This includes the regularization term for the LR model and the kernel for the SVM. For these
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specific parameters, we ran some experiments to find out which choices gave the best (i.e. clos-
est to the original) results. This resulted in us using the defaults for LR, i.e. LBFGS solver and
L2-regularization and a sigmoid kernel for SVM 4.

Our neural network follows the architecture described by Wang (2019) as well. The network has
three segments. The first is an input segment which takes a tokenized input sentence and embeds it
with pre-trained word embeddings. The second portion is an encoder, which consists of a bidirec-
tional gated recurrent unit (GRU). Finally, we use an attention mechanism to determine which words
are important for classification, and run the results through a softmax function to do prediction. For
this, we chose an Adam optimizer and cross-entropy loss function.

We used several BERT models on the smaller training data we have. These include RoBERTa,
scientific language-aware language model SciBERT (Beltagy et al., 2019) and material science
aware language models MatSciBERT (Trewartha et al., 2022), MatBERT (Gupta et al., 2022)
5. While previous works use the version of MatBERT hosted on Huggingface (Wolf et al.,
2020), namely allenai/scibert scivocab uncased, m3rg-iitd/matscibert and
roberta-large. The MatBERT model we use was downloaded from the GitHub repository
for publication.

4.3 RESULTS

4.3.1 REPRODUCTION

In general, we are able to reproduce Wang (2019), see table 2. Although some of our results are
slightly off the original ones (specifically LR + BOW and SVM + word2vec), the rest are rela-
tively close. We chalk up most of the difference to differences in our train-test split and unreported
hyperparameters in Wang (2019).

Method F1 Score (Reproduction) F1 Score (Wang)

LR + BOW 0.86 0.81
LR + TF-IDF 0.78 0.79
LR + word2vec 0.78 0.80
SVM + BOW 0.85 0.82
SVM + TF-IDF 0.83 0.83
SVM + word2vec 0.79 0.85
Attention NN 0.84 0.84
Attention NN + word2vec 0.85 0.88

Table 2: Results of our reproduction compared to results reported in Wang (2019). All decimals are
rounded to two decimal places.

4.3.2 PREPROCESSING AND TUNING

The first additions we made involved increasing the amount of preprocessing that we did on the text.
The bulk of this meant the addition of more special characters to the text; for example: replacing
integers with <int>, decimals with <dec>, and temperatures with <temp>. In addition to that,
we also removed many line breaks which were present in the original data and unaccounted for in
the original paper. A more complete breakdown is available in appendix A.2.

The hyperparameter tuning was relatively simple. We used randomized search cross-validation (with
scikit-learn’s built-in RandomizedSearchCV) to tune the hyperparameters of the different mod-
els. We focused on tuning the regularization term and the class weighting. Additionally, we scaled
the different types of feature vectors using StandardScalar.

4Our presentation used an RBF kernel SVM for reproduction, which is one of the reasons why the repro-
duction results here differ from those reported earlier.

5For SciBERT, MatSciBERT and MatBERT, following hyperparameters are used: batch size = 32, learning
rate = 5e-5, epochs = 10, dropout = 0.1
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Method + Preprocessing + Tuning

LR + BOW 0.82 (-0.04, +0.01) 0.83 (-0.03, +0.02)
LR + TF-IDF 0.81 (+0.03, +0.02) 0.79 (+0.01, +0.00)
LR + word2vec 0.83 (-0.02, -0.04) 0.78 (+0.00, -0.02)
SVM + BOW 0.73 (-0.10, -0.10) 0.69 (-0.15, -0.13)
SVM + TF-IDF 0.75 (-0.08, -0.08) 0.72 (-0.11, - 0.11)
SVM + word2vec 0.76 (-0.03, -0.09) 0.62 (-0.17, -0.23)
Attention NN 0.84 (+0.00, +0.00) N/A
Attention NN + word2vec 0.86 (+0.01, -0.02) N/A

Table 3: Results of our improvements to the models from Wang. The parenthesized values are
the change from our reproduced baseline and from Wang’s baseline in that order. All decimals are
rounded to two decimal places.

From the results in table 3, we see that neither of these approaches was especially effective in
improving the performance of the model 6. While the preprocessing tends to lead to small gains for
the LR and Attention methods, it leads to large losses for SVM.

4.3.3 ADDITIONAL DATA

Despite the problems with the labeling of the additional data, we tried splitting it into train and test
sets and appending those to our original training and test sets. The effect of the additional data
was negligible for all but the neural network, which showed some modest improvement. The exact
scores are reported in appendix A.3.

4.3.4 ROBERTA MODEL

Since the available training data was somewhat limited, we thought that a pre-trained model with
finetuning would yield better results than the attention-based neural network. RoBERTa was se-
lected because it naturally fits our classification task as an encoder model since we don’t require
text generation. It remains among the highest-ranked single models in many benchmark datasets,
including SQuAD, MNLI-m, and SST-2 (Liu et al., 2019). The following hyperparameters were
used for finetuning: max length = 128, batch size = 8, learning rate = 1e-5, epochs = 14, dropout
= 0.3. Training also used a linear decay learning rate scheduler with a 10% warmup period. The
hidden layer’s size matched the output’s size, making it 768 for roberta-base and 1024 for
roberta-large.

Method F1 Score

roberta-base 0.90
roberta-base + preprocessing 0.92
roberta-large 0.92
roberta-large + preprocessing 0.93

Table 4: F1 Score performance of fine-tuned RoBERTa model with single pre-classification hidden
dimension. The highlighted differences are between model size and custom data preprocessing. The
weighted average was used to calculate the multi-class F1 score.

4.3.5 ADDITIONAL MODELS

We experimented with several additional models, namely Random Forest, XGBoost, and an alter-
native attention neural network. XGBoost, in particular, was employed to help with the problem of
imbalanced data. In this experiment, sentences were featurized using bag of words. No pretrained
models were used (i.e., word embeddings for the neural model were learned from scratch). The

6In the initial presentation, we were using validation results, not test results, which ended up being much
lower.
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Attention neural network was configured with the following: trigram embedding with dim size =
8, self-attention layer, dropout = 0.3, averaged embedding outputs, tanh activation function, direct
projection to classification layer, log softmax for class probabilities.

In this experiment, even a moderate size neural model easily overfitted to the training data, hence
the small size of the employed models. Also, using LSTM blocks instead of trigrams made the
performance of the model unstable. As we can see in table 5, the results of these models were at or
below the baseline values in table 2, and were therefore abandoned early on.

Model w/o preprocessing w/ preprocessing

Random forest 0.720 0.767
XGBoost 0.809 0.815
Attention on trigrams 0.813 0.831

Table 5: Evaluation of additional models. Results are accuracies averaged across three-fold cross-
validation on the training set.

4.3.6 SCIBERT, MATSCIBERT, MATBERT

The results can be seen in Table 6.

Model F1 Score

SciBERT 0.91
MatSciBERT 0.91
MatBERT 0.92

Table 6: Evaluation of scientific language aware models. Results are weighted-averaged F1 scores.

5 ANALYSIS

5.1 PREPROCESSING AND TUNING

As noted in section 4.3.2, adding preprocessing to our models improves performance while tuning
degrades typically leads to overfitting. This would seem to suggest that our approach to hyperpa-
rameter tuning was acting as an avenue for overfitting rather than allowing the model to zero in on
more general relationships in the training data. It might also suggest that Logistic Regression and
SVM are poorly-suited to the task at hand.

We believe that preprocessing was able to improve the results by reducing the number of tokens
the model had to handle and as a result, making it easier for the models to ”attach meaning” to
tokens like temperatures and decimals. As an example, the model should not need to know whether
a polymer was heated to 100 degrees or 1000 degrees, both should still result in an ”action” label.

5.2 ADDITONAL DATA

While the additional data had problems with it, the fact that it improved the performance of the neural
network models does carry some promise. The new data were classified with an imperfect rule-based
model, and yet the neural nets were able to correctly identify many points both the original and
additional data. This might imply these neural models are able to learn the sorts of common-sense
rules that we were able to identify. A more robust rule-based model (and perhaps even a learned
one, i.e. a decision tree) might be able to make more progress here.

5.3 ROBERTA

The most limiting aspect of this model choice was the byte pair encoding used for tokenization.
This made it more difficult to experiment with other types of pre-trained embeddings without signif-
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icantly increasing the complexity of the model and training time. The most significant preprocess-
ing improvements were achieved by removing line breaks and replacing temperature numbers with
a generic tag. The most significant hyperparameters were the batch size and dropout rate. There
didn’t appear to be any systemic error patterns in mispredicted sentences. The model struggled with
variants of the sentence, “The chemicals were obtained from the following sources and used without
further purification.” Otherwise, the errors seem indistinguishable from what a human would make.
With more time and computing power, we would have liked to try an ensembled version of this
model.

Figure 3: Confusion matrix for RoBERTa pre-trained variant. The labels are defined as follows:
Action = 0, Constituent = 1, Unrelated = 2, Property = 3.

6 CONCLUSION

In recent years, NLP has become applicable to the field of materials science. One particular way
that it can be applied is by picking specific properties and experiments out of published papers for
inclusion in public databases of materials. We attempted to replicate and improve one attempt at this
by Wang (2019). We were able to replicate Wang’s results. We tried several methods to improve
Wang’s models, and found that the best ways to do so were to one: stick to attention-based neural
networks; two: add preprocessing to the text; and three: use pretrained word embeddings such as
RoBERTa. Through these methods, we were able to bring the top F1 scores of Wang’s models from
0.88 to around 0.92. While these slight improvements are useful, they may suggest that this task is
nearing its point of diminishing returns.
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A APPENDICES

A.1 DATA SAMPLE

Label Text
action The products were dried under vacuum at 60 °C for 24 h.
action In this process, the magnetic stirring lasted 2 h at room temperature.
constituent The resin to curing agent mass ratio is 1:1 for stoichiometric curing.
constituent Lexan 121 (General Electric) was chosen for the polymer matrix.
property The thickness of the films was 10-20 µm.
property The selected flexibilizer was a low viscosity polyglycol.
unrelated Three steps were used to prepare the nanocomposites.
unrelated The details of sample formulations are discussed in [15].

Table 7: A small sample of the training dataset

A.2 PREPROCESSING DETAILS

• Remove line breaks (e.g. ”elec- tron” → ”electron”).
• Lower case (e.g. ”Material” → ”material”).
• Separate following symbols from other words: [’(’, ’)’, ’[’, ’]’, ’,’, ’;’, ’:’, ’/’, ’%’, ’+’, ’-’,

’’, ’–’, ’’,’° c’, ’°c’, ’◦ c’, ’◦c’, ’µ’, ’ml’] (e.g. ”(12” → ”( 12”).
• Unify various expressions of temperature (e.g. ’°c’, ’◦ c’ → ”⟨temp⟩”).
• Unify various expressions of integers (e.g. ’60’, ’2’ → ”⟨int⟩”)
• Unify various expressions of decimals (e.g. ’0.5’, ’1.5’ → ”⟨dec⟩”).
• Unify various expressions of ratios (e.g. ’1:1’, ’1:1.5’ → ”⟨ratio⟩”).

A.3 ADDITIONAL DATA IMPROVEMENT

Method F1 Score

LR + BOW 0.81
LR + TF-IDF 0.79
LR + word2vec 0.77
SVM + BOW 0.74
SVM + TF-IDF 0.79
SVM + word2vec 0.63
Attention NN 0.88
Attention NN + word2vec 0.88

Table 8: Results of the baseline models with the additional data. All decimals rounded to two
decimal places.
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A.4 ATTENTION WEIGHT EXAMPLES

Note that the sentence in these examples was labelled as an action sentence.

Figure 4: Heatmap of the attention for learned word embeddings.

Figure 5: Heatmap for the attention for word2vec embeddings.
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